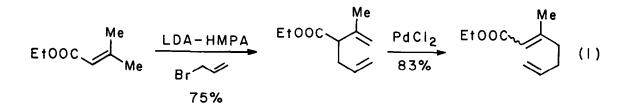

PALLADIUM DICHLORIDE CATALYZED COPE REARRANGEMENTS OF FUNCTIONALIZED ACYCLIC 1,5-DIENES¹

Larry E. Overman* and Alfred F. Renaldo Department of Chemistry, University of California Irvine, California 92717

<u>Summary:</u> The Cope rearrangement of acyclic 1,5-dienes having an electronwithdrawing group at carbon-3 and an alkyl substituent at carbon-2 is effectively catalyzed by palladium dichloride. This reaction can be employed to achieve clean γ -allylation of vinyl esters and acids.


Palladium dichloride catalyzed Cope rearrangements of acyclic 1,5-dienes were first reported from these laboratories in 1980.² We have subsequently demonstrated³ that the rearrangement of an enantiomerically pure substrate occurs <u>via</u> a chair topology with virtually complete transfer of chirality. The use of this method to catalyze oxy-Cope rearrangements has also been reported recently by other investigators.⁴ One of the aims of our current studies in this area is to determine the functional group compatibility of this catalytic method. In this Letter, we report that acyclic 1,5-dienes containing an electron-withdrawing group at carbon-3, and an alkyl substituent at carbon-2, undergo palladium dichloride catalyzed Cope rearrangements in good yields at 40° C.⁵ Importantly, these transformations (eq 1) are not complicated by competing carbon-carbon double migrations, which can plague related thermal Cope rearrangements.^{6,7}

The results of our preliminary study are summarized in the Table. Catalytic rearrangements were conducted at 0.1 \underline{M} in CH₂Cl₂ using 0.1 equiv of bis(acetonitrile)palladium dichloride. After the reaction was judged complete by GC analysis, silica gel (1 g/25 mg of catalyst) was added, the concentrated residue was layered on top of a silica gel chromatography column, and products⁸ were eluted with mixtures of hexane and ethyl acetate. The rearrangement of <u>3</u> (R=COOEt) could be successfully conducted in THF or toluene, although the rate was somewhat slower² than in CH₂Cl₂. Diene products were typically characterized⁸ by their diagnostic⁹ high field ¹H NMR spectra, and in the case of <u>9</u> by preparation¹⁰ from 4-methyl-6-hexen-3-one. The reported E/Z ratios do not reflect kinetic stereoselectivities, since pure samples of Z-<u>4</u>(R=COOEt) and E-<u>4</u>(R=COOEt) underwent significant¹¹ equilibration when treated at 40^oC for 3 h with 0.1 equiv of PdCl₂(MeCN)₂.

This catalyzed reorganization proceeds with ester, ketone, carboxylic acid, and nitrile substituents, although the rearrangement of the nitrile substrate was less clean. The failure of the rearrangement with a tertiary amide substituent may in part reflect binding of the catalyst by the amide group, since the rearrangement of 3(R=COOEt) was <u>ca.</u> 10 times slower in the presence of 1.0 equiv of N,N-dimethylformamide. The advantages of the palladium dichloride catalyzed method are nicely illustrated by the high yielding rearrangements of <u>5</u> and <u>7</u>. Conia has reported⁶ thermal Cope rearrangements of these dienes at 220-240°C, and ene cyclizations (Conia reaction) of the product diene mixtures at 300°C. A major complication⁶ of the thermal Cope rearrangements of <u>5</u> and <u>7</u> is the formation of major¹² amounts of the β , γ -unsaturated isomers of <u>6</u> and 8.¹³

Many of the dienes employed in this study were prepared by α -alkylation¹⁴ of the corresponding α,β -unsaturated starting material. Thus, α -allylation followed by palladium dichloride catalyzed Cope rearrangement provides a two-step procedure for clean γ -allylation¹⁵ of vinyl esters and acids. This sequence is illustrated for an ester substrate in eq. 1.

Acknowledgment. The financial support of the National Science Foundation (CHE 82-03366 and Departmental Instrumentation Grants) is gratefully acknowledged. We thank Johnson Matthey, Inc., for loans of palladium dichloride.

Reaction		Conditions Time	Yield ^a	Product Ratios		
				1	E-2	Z-2
$\stackrel{Me}{\overset{R}{\overset{C}{\overset{C}}}} \rightarrow \stackrel{Me}{\overset{C}{\overset{C}{\overset{C}}}}$	R=COOEt	5 h	83	-	65	35
3 4	R=COMe	5.5h	94	I	68	31
	R=CN	36h ^b	(77%) ^c	-	75	25
	R = COOH	24h	64	-	65	35
	R = CON	36h	no read	tion		
Me Me	Me Me 6	2.5h	77	-	50	50
Merry O Me 7		4 h	81	-	50	50
		5 h	90	-	24	76
	DOC Me	4 h	80 ^d	25	54	21
	9 9	l 2 h	76 ^d	19	66 ^e	5 ^e

TABLE: PALLADIUM DICHLORIDE CATALYZED COPE REARRANGEMENTS

^a Isolated yield of the mixture of stereoisomers $\underline{2}$ (and $\underline{1}$ if the rearrangement was reversible). Other compounds were present to the extent of <5% (capillary GC analysis), unless otherwise noted. ^b 0.3 Equiv of PdCl₂(MeCN)₂ was employed. ^c A 91% weight recovery of Cope product, which was contaminated with 15% of uncharacterized byproducts. ^d The ratio of starting material to Cope products was unchanged upon resubmission of the product mixture. ^e Tentative stereoisomer assignments.

References and Notes

- Catalyzed Sigmatropic Rearrangements. 8. For part 7, see: Overman, L.E.; Renaldo, A.F. <u>Tetrahedron Lett.</u> <u>1983</u>, in press.
- 2. Overman, L.E.; Knoll, F.M. J. Am. Chem. Soc. 1980, 102, 865-867.
- 3. Overman, L.E.; Jacobsen, E.J. J. Am. Chem. Soc. 1982, 104, 7225-7231.
- Bluthe, N.; Malacria, M.; Gore, J. Tetrahedron Lett. <u>1983</u>, <u>24</u>, 1157-1160.
- 5. Acyclic 1,5-dienes containing electron-withdrawing groups at carbon-3 and alkyl substituents at carbon-5 do <u>not</u> undergo catalyzed Cope rearrangements under these conditions, see reference 1.
- 6. Rhoades, S.J.; Rawling, S. Org. Reactions, 1975, 22, 1-107.
- 7. Cf. Conia, J.-M.; LePerchec, P. <u>Bull. Soc. Chim. Fr.</u> <u>1966</u>, 273-277; 278-281
- 8. New compounds showed IR, 250 MHz¹H NMR and mass spectra consistent with their assigned structures. Stereoisomeric products were typically separated by preparative GC and their stereostructures followed from diagnostic⁹ chemical shift differences of the β-substituents.
- 9. Cf. Jackman, L.M.; Sternhell, S. "Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry"; Pergamon: Oxford, 1969, pp 222-225.
- Shimoji, K.; Taguchi, H.; Oshima, K.; Yamamoto, H.; Nozaki, H. <u>J. Am.</u> Chem. Soc. 1974, 96, 1620-1621.
- 11. Approximately 35% equilibration, assuming that the equilibrium ratio is 1:1.
- 12. The deconjugated isomer of <u>6</u> comprises 28% and 65% of the Cope product mixture at 220°C and 240°C, respectively, while the deconjugated isomer of 8 is the major Cope product at 220°C.⁷
- Deconjugated isomers were present to the extent of <1% in the catalyzed rearrangements of 5 and 7.
- 14. Herrmann, J.L.; Kieczykowski, G.R.; Schlessinger, R.H. <u>Tetrahedron Lett.</u> <u>1973</u>, 2433-2436.
- 15. For recent examples and leading references, see, inter alia, Majewski, M.; Mpango, G.B.; Thomas, M.T.; Wu, A.; Snieckus, V. J. Org. Chem. 1981, 46, 2029-2045. Savu, P.M.; Katzenellenbogen, J.A. J. Org. Chem. 1981, 46, 239-250. Fleming, I.; Goldhill, J.; Paterson, I. Tetrahedron Lett. 1979, 3207-3210. Kende, A.S.; Constantinides, D.; Lee, S.J.; Liebskind, L. Ibid. 1975, 405-408.

(Received in USA 16 May 1983)

3760